Complete Plastid Genome of the Recent Holoparasite Lathraea squamaria Reveals Earliest Stages of Plastome Reduction in Orobanchaceae.
نویسندگان
چکیده
Plants from the family Orobanchaceae are widely used as a model to study different aspects of parasitic lifestyle including host-parasite interactions and physiological and genomic adaptations. Among the latter, the most prominent are those that occurred due to the loss of photosynthesis; they include the reduction of the photosynthesis-related gene set in both nuclear and plastid genomes. In Orobanchaceae, the transition to non-photosynthetic lifestyle occurred several times independently, but only one lineage has been in the focus of evolutionary studies. These studies included analysis of plastid genomes and transcriptomes and allowed the inference of patterns and mechanisms of genome reduction that are thought to be general for parasitic plants. Here we report the plastid genome of Lathraea squamaria, a holoparasitic plant from Orobanchaceae, clade Rhinantheae. We found that in this plant the degree of plastome reduction is the least among non-photosynthetic plants. Like other parasites, Lathraea possess a plastome with elevated absolute rate of nucleotide substitution. The only gene lost is petL, all other genes typical for the plastid genome are present, but some of them-those encoding photosystem components (22 genes), cytochrome b6/f complex proteins (4 genes), plastid-encoded RNA polymerase subunits (2 genes), ribosomal proteins (2 genes), ccsA and cemA-are pseudogenized. Genes for cytochrome b6/f complex and photosystems I and II that do not carry nonsense or frameshift mutations have an increased ratio of non-synonymous to synonymous substitution rates, indicating the relaxation of purifying selection. Our divergence time estimates showed that transition to holoparasitism in Lathraea lineage occurred relatively recently, whereas the holoparasitic lineage Orobancheae is about two times older.
منابع مشابه
Limited mitogenomic degradation in response to a parasitic lifestyle in Orobanchaceae
In parasitic plants, the reduction in plastid genome (plastome) size and content is driven predominantly by the loss of photosynthetic genes. The first completed mitochondrial genomes (mitogenomes) from parasitic mistletoes also exhibit significant degradation, but the generality of this observation for other parasitic plants is unclear. We sequenced the complete mitogenome and plastome of the ...
متن کاملDetecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae).
Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasi...
متن کاملUnderstanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae).
BACKGROUND AND AIMS Plant plastid genomes are highly conserved in size, gene content and structure; however, parasitic plants are a noticeable exception to this evolutionary stability. Although the evolution of parasites could help to better understand plastome evolution in general, complete plastomes of parasites have been sequenced only for some lineages so far. Here we contribute to filling ...
متن کاملPlastid genes that were lost along the road to parasitism.
Some plants rely on others to do their photosynthesis for them. For example, most plants in thebroomrape family (Orobanchaceae; see figure) are parasitic, meaning they rely on a host plant for inorganic and organic nutrients as well as water. In most land plants, the selective pressure on photosynthesis-related elements causes plastid chromosomes to be conserved in terms of structure, gene cont...
متن کاملTranscriptomes of the Parasitic Plant Family Orobanchaceae Reveal Surprising Conservation of Chlorophyll Synthesis
Parasitism in flowering plants has evolved at least 11 times [1]. Only one family, Orobanchaceae, comprises all major nutritional types of parasites: facultative, hemiparasitic (partially photosynthetic), and holoparasitic (nonphotosynthetic) [2]. Additionally, the family includes Lindenbergia, a nonparasitic genus sister to all parasitic Orobanchaceae [3-6]. Parasitic Orobanchaceae include spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PloS one
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2016